An Adaptive Infeasible Interior-Point Algorithm for Linear Complementarity Problems
نویسندگان
چکیده
منابع مشابه
Improved infeasible-interior-point algorithm for linear complementarity problems
We present a modified version of the infeasible-interior- We present a modified version of the infeasible-interior-point algorithm for monotone linear complementary problems introduced by Mansouri et al. (Nonlinear Anal. Real World Appl. 12(2011) 545--561). Each main step of the algorithm consists of a feasibility step and several centering steps. We use a different feasibility step, which tar...
متن کاملimproved infeasible-interior-point algorithm for linear complementarity problems
we present a modified version of the infeasible-interior- we present a modified version of the infeasible-interior-point algorithm for monotone linear complementary problems introduced by mansouri et al. (nonlinear anal. real world appl. 12(2011) 545--561). each main step of the algorithm consists of a feasibility step and several centering steps. we use a different feasibility step, which targ...
متن کاملAn infeasible-interior-point algorithm for linear complementarity problems
In this paper, we discuss a polynomial and Q-subquadratically convergent algorithm for linear complementarity problems that does not require feasibility of the initial point or the subsequent iterates. The algorithm is a modiication of the linearly convergent method of Zhang and requires the solution of at most two linear systems with the same coeecient matrix at each iteration.
متن کاملImproved Infeasible-interior-point Algorithm for Linear Complementarity Problems
We present a modified version of the infeasible-interiorpoint algorithm for monotone linear complementary problems introduced by Mansouri et al. (Nonlinear Anal. Real World Appl. 12(2011) 545–561). Each main step of the algorithm consists of a feasibility step and several centering steps. We use a different feasibility step, which targets at the μ-center. It results a better iteration bound.
متن کاملA full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem
A full Nesterov-Todd (NT) step infeasible interior-point algorithm is proposed for solving monotone linear complementarity problems over symmetric cones by using Euclidean Jordan algebra. Two types of full NT-steps are used, feasibility steps and centering steps. The algorithm starts from strictly feasible iterates of a perturbed problem, and, using the central path and feasi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Operations Research Society of China
سال: 2013
ISSN: 2194-668X,2194-6698
DOI: 10.1007/s40305-013-0031-x